Search results for "Stress transfer mechanism"
showing 2 items of 2 documents
Analytical prediction of the shear connection capacity in composite steel–concrete trussed beams
2016
Steel–concrete trussed composite beams are a particular types of composite girders constituted by a steel truss embedded in a concrete core. The truss is typically composed by a steel plate or a precast concrete slab working as bottom chord while coupled rebars are generally used to form the upper chord. Moreover, a system of ribbed or smooth steel rebars welded to the plate and forming the diagonals of the truss, works as web reinforcement. In the present study, the attention is focused on the evaluation of the shear resistance of the connection between bottom steel plate (the bottom chord) and concrete core through the diagonal bars of the truss developing a mechanical model able to accou…
Assessment of push-out test response of hybrid steel trussed-concrete beams by FE model
2013
Aiming to investigate the truss-concrete stress transfer mechanism in Hybrid Steel Trussed-Concrete Beams (HSTCBs), a three-dimensional nonlinear FE model is developed. The constitutive laws of the steel composing the plates and the bars is modeled by means of a quadri-linear law, while the concrete behavior is defined by means of a Concrete Damaged Plasticity (CDP) model, suitable for modeling concrete and brittle materials. The CDP model uses the concept of isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity and is able to properly account for the concrete confinement effect. Two main failure mechanisms are considered, namely the tensile cracking …